were obtained on standing.

(b) Trans Isomer. (i) $Refluxing trans-[RuNO(S_2CNMe₂)₂Cl]$ (0.09 g) and AgN₃ (0.08 g) in methanol for \sim 6 h gave a brown suspension. Filtration, followed by evaporation, gave a brown solid (0.05 g). This was dissolved in a minimum amount of CH_2Cl_2 and passed through neutral alumina (12 in. **X** 1/2 in.). The trans isomer was eluted with $CH₂Cl₂$ as a yellow band. Methanol was added, and orange needles were obtained on standing; yield 0.022 **g** (24%). A thin brown band of the hydroxo complex remained at the head of the column. When *trans*-[RuNO(S₂CNMe₂)₂Cl] was refluxed with AgN₃ for only 2 h, lower yields of the trans isomer were obtained (4%). The cis isomer was eluted second from the column (20%).

(ii) A more convenient preparation entailed heating solid cis- $[RuNO(S_2CNMe_2)_2N_3]$ in air to a temperature of approximately 180 ^oC. At ca. 150 ^oC, the brown crystals changed to yellow. The sample was left at 170-180 ^oC for approximately 10 min. The yellow product was washed with diethyl ether.

 $[RuNO(S_2CNMe_2)_2SCN]$. (a) Cis Isomer. The method described for the azido complex was followed. The yield of product from 0.06 g of cis-[RuNO(\dot{S}_2 CNM e_2)₂I] and 0.025 g of AgSCN was 0.045 g, 85%. Dissolution in CH_2Cl_2 and passage through an alumina column showed only traces of trans isomer (pale yellow band) which eluted first. The cis isomer was present as a brown band. Recrystallization from CH_2Cl_2/CH_3OH gave brown crystals.

(b) Trans Isomer. Solid cis-[RuNO(S₂CNMe₂)₂SCN] was heated in air to approximately 220 °C. At 210-215 °C, a color change from brown to tan occurred. Under the microscope the product appeared as tiny yellow crystals. The sample was left at 220 $^{\circ}$ C for about 10 min. The product was then washed with ether and recrystallized from $CH₂Cl₂/CH₃OH.$

Poor yields of the complex were obtained by refluxing *trans-* $[RuNO(S_2CNMe_2)_2Cl]$ (0.1 g) with AgSCN (0.09 g) in methanol for 4 h. The brown product $(0.09 g)$ obtained after filtration was treated as for the cis isomer. The trans isomer was eluted first (4%) followed by the cis complex (15%). The trans hydroxo complex remained at the head of the column.

 $[RuNO(S_2CNMe_2)_2NCO]$. (a) Cis Isomer. (i) A mixture of cis -[RuNO(S₂CNMe₂)₂I] (0.1 g) and AgNCO (0.05 g) was refluxed in methanol for 10 min. A color change from brown to yellow occurred. A yellow-brown solid was isolated after filtration. Dissolution in CH_2Cl_2 and passage through neutral alumina gave a light brown band which was readily eluted with CH₂Cl₂. Khaki crystals were obtained; yield 0.015 g, 18%. A second yellow band, not shifted by CH_2Cl_2 , was readily eluted with CH_3OH and yielded amber crystals of *trans*-[RuNO(S₂CNMe₂)₂OH]·CH₃OH; yield 0.015 g, 18%.
(ii) Heating *cis*-[RuNO(S₂CNMe₂)₂I] (0.1 g) in acetonitrile with

a slight excess of AgPF₆, followed by cooling and filtering, gave a yellow-orange solution. Solid KNCO (0.05 g) was added and a brown solution resulted after boiling the mixture for several minutes. The solid was treated as in (i). The yellow trans isomer was eluted first *(5%)* followed by the cis isomer (25%).

(b) Trans Isomer. Heating solid *cis*- $\left[\text{RuNO}(S_2\text{CNMe}_2)_2\text{NCO}\right]$ in air to approximately 175 °C resulted in quantitative conversion to the yellow trans isomers. The product was washed with ether.

Sodium **N-Methyl-N-ethylidithiocarbamate.** N-Methyl-N-ethylamine hydrochloride (1 g) was dissolved in chilled methanol (10 cm³). Addition of CS_2 (1 cm³) was followed by an aqueous solution of NaOH (1 g in a minimum volume). Stirring gradually gave a yellow solution which upon slow evaporation yielded white crystals. These were collected, washed with ether and pentane, and recrystallized twice from methanol. The mother liquor yielded several batches of crystals: total yield 1.4 g, 64%; mp 113-115 °C.

Silver **Salts.** These were prepared by metathesis from silver nitrate and the required sodium salt. The labeled nitrite, $Ag^{15}NO_2$, was prepared from AgClO₄ and Na¹⁵NO₂ (¹⁵N 99%); yield 76%.

Acknowledgment. The authors wish to thank the National Science Foundation for support of this research. We also thank Dr. M. Barfield and Dr. D. Gust for their assistance in obtaining **15N** and **13C** NMR spectra.

Registry No. *trans*-[RuNO(S₂CNMe₂)₂Cl], 72075-88-8; *trans-* $[RuNO(S_2CNEt_2)_2Cl]$, 72075-89-9; trans- $[\overline{RuNO}(S_2CNMePh)_2Cl]$, 72075-90-2; trans-[RuNO(S₂CNMeEt)₂Cl], 72075-91-3; trans- $[RuNO(S_2CNMe_2)_2N_3], 72075-92-4; trans- [RuNO (S_2CNMe_2)_2NCO$], 72075-93-5; trans-[RuNO(S₂CNMe₂)₂SCN], 72075-94-6; trans-[RuNO(S₂CNMe₂)₂OH], 72075-95-7; *trans-*[RuNO(S₂CNMe₂)₂H₂O]BF₄, 72075-97-9; trans-[RuNO-
(S₂CNMe₂)₂CH₃OH]PF₆, 72075-99-1; *cis*-[RuNO(S₂CNMe₂)₃], 51139-59-4; cis-[RuNO(S₂CNMe₂)₂F], 72076-00-7; cis-[RuNO-(S₂CNMe₂)₂Br], 72076-01-8; *cis*-[RuNO(S₂CNMe₂)₂I], 72076-02-9; cis -[RuNO(S₂CNEt₂)₂Br], 72076-03-0; cis-[RuNO(S₂CNEt₂)₂I], 72076-04-1; cis-[RuNO(S₂CNMeEt)₂Br], 72076-05-2; cis-[RuNO- $(S_2CNMeEt)_2I]$, 72076-06-3; cis-[RuNO(S₂CNMe₂)₂NO₂], 72076-07-4; cis-[RuNO(S₂CNMe₂)₂N₃], 72120-76-4; cis-[RuNO- $(S_2CNMe_2)_2SCN$], 72120-77-5; cis-[RuNO(S₂CNMe₂)₂NCO], 72120-78-6; RuNOCl₃, 18902-42-6.

> Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50011

Novel Transition-Metal Complexes of Camphorquinone Dioxime Ligands

MAN SHEUNG MA and ROBERT J. ANGELICI*

Received June *25, 1979*

Camphorquinone dioxime, H₂CQD, is known to exist in four isomeric forms $(\alpha, \beta, \gamma, \text{and } \delta)$ which differ by the orientations of the OH groups on their oxime nitrogen atoms. The deprotonated β -HCQD⁻coordinates via the two N atoms to form the square-planar complexes Pd(β -HCQD)₂, Pt(β -HCQD)₂, and Cu(β -HCQD)₂. H₂O \cdot ¹/₂dioxane. However, δ - and α -HCQD⁻ coordinate via one N and one O atom to yield square-planar complexes of the type $Pd(\delta-HCQD)_2$, Ni $(\delta-HCQD)_2$, and $\text{Ni}(\alpha-\text{HCQD})_2$. The neutral $\beta-\text{H}_2\text{CQD}$ ligand forms $\text{Pd}(\beta-\text{H}_2\text{CQD})\text{C1}_2$, $\text{Pt}(\beta-\text{H}_2\text{CQD})\text{C1}_2$, and $\text{Cu}(\beta-\text{H}_2\text{CQD})\text{C1}_2$ complexes in which the ligand coordinates through both N atoms. Spectroscopic evidence indicates that α -, γ -, and δ -H₂CQD are monodentate ligands, coordinating via only one N atom, in Pd(α -H₂CQD)₂Cl₂, Pd(α -H Finally, structures for two complexes of the unusual composition Ni(δ -HCQD)₂(δ -H₂CQD)₂ and [Pt(γ -HCQD)(γ -H₂CQD)Cl]₂ have been suggested. Ultraviolet-visible, infrared, ESR, and ¹H NMR spectroscopy were employed to characterize these new types of α -dioxime complexes.

Introduction

The chemistry of transition-metal complexes with α -dioxime ligands has been well studied and is the subject of several reviews. $1-5$ Yet little was known about the coordination Yet little was known about the coordination

-
- (1) Chakravorty, A. Coord. Chem. Rev. 1974, 13, 1.
(2) Holm, R. H.; O'Connor, M. J. *Prog. Inorg. Chem.* 1971, 14, 277.
(3) Schrauzer, G. N. Angew. Chem., *Int. Ed. Engl.* 1976, 15, 417.
(4) Miller, J. S.; Epstein, A. J. P
- chemistry of transition metals with the camphorquinone dioxime ligands, H_2CQD , until last year when work in this laboratory⁶ and in Osaka University⁷⁻⁹ was reported.
- **(6)** Ma, **M.** S.; Angelici. R. J.; Powell, D.; Jacobson, R. **A.** *J. Am. Chem. SOC.* **1978,** *100,* **7068.**
- **(7)** Nakamura, **A.;** Konishi, **A,;** Tatsuno, *Y.;* Otsuka, S. *J. Am. Chem. SOC.* **1978,** *100,* **3443.**

⁽⁵⁾ Thomas, T. **W.;** Underhill, A. E. *Chem. SOC. Rev.* **1972,** 1, 99.

Our interest in this area evolved from previous studies of optically active ligands^{10,11} and a desire to prepare complexes with optically active α -dioxime ligands. Unlike dimethylglyoxime, H_2DMG , or cyclohexanedione dioxime, H_2CHD , camphorquinone dioxime has been isolated in four isomeric forms which, henceforth, are referred to as α -, β -, γ -, and δ -H₂CQD as shown below. In the present paper, we describe transition-metal complexes of all of these isomers, as well as the diverse and novel ways in which these ligands coordinate to metal ions.

Experimental Section

Spectral Data. 'H NMR spectra were obtained on a Varian HA-100 spectrometer using Me₄Si as internal reference. IR spectra $(4000-200 \text{ cm}^{-1})$ were obtained with KBr pellets by using a Beckman IR-4250 spectrophotometer. Electronic spectra were recorded on a JASCO-ORD/UV-5 or Cary 14 instrument with CHCI₃ as solvent.

Conductivity Measurement. The molar conductivity of $Pd(\gamma H_2CQD_2Cl_2$ in MeOH was measured to be 33.25 cm² Ω^{-1} M⁻¹ using an Industrial Instruments Model RC16-B2 conductivity bridge. The cell constant was 0.3712, and the concentration of $Pd(\gamma-H_2CQD)_2Cl_2$ was 1.79 \times 10⁻³ M.
Starting Materials. Pd(PhCN)₂Cl₂¹² and Pt(PhCN)₂Cl₂¹³ were

prepared according to published procedures. The optically active isomeric camphorquinone dioxime ligands were prepared from (+)-camphor by the procedures of Forster.I4 Deuterium-exchange reactions of the camphorquinone dioxime ligands and $Ni(\delta\text{-HCQD})_2$ were carried out by refluxing the compounds for 10 h in CH₃OD and then reisolating them by subsequent removal of the solvent under

vacuum.
Preparation of Ni(δ **-HCQD)₂.** Single crystals of Ni(δ -HCQD)₂ were prepared by dissolving 0.64 mmol of $Ni(NO₃)₂·6H₂O$ in 10 mL of MeOH at 50 6 C. Then 1.24 mmol of γ -H₂CQD was added. While the mixture was being stirred, 1.24 mmol of NaOMe in 10 mL of MeOH was added. The resulting green solution was refluxed for 2-3 h. This solution was filtered while still hot. The solvent was removed under vacuum. The crude solids obtained were dissolved in CH₃CN and filtered. Upon standing overnight at room temperature in a stoppered flask, the filtrate yielded brown tetrahedral crystals of $Ni(\delta\text{-}HCQD)_{2}$, yield 20%. Anal. Calcd for $Ni(C_{10}H_{15}N_{2}O_{2})_{2}$: C, 53.46; H, 6.74; N, 12.47. Found: C, 53.28; H, 6.60; N, 12.55.

Preparation of Ni(α **-HCQD)₂.** This compound was prepared by dissolving 0.32 mmol of α -H₂CQD in MeOH containing 0.16 mmol of $Ni(OAc)₂·4H₂O$. The resulting solution was filtered. Upon allowing the filtrate to stand overnight, fine green needle-like crystals of $Ni(\alpha\text{-}HCQD)$ ₂ deposited; yield 50%. Anal. Calcd for Ni- $(C_{10}H_1,N_2O_2)$: C, 53.47; H, 6.75; N, 12.47. Found: C, 53.51; H, 6.75; N, 12.72.

- (8) Nakamura, **A.;** Konishi, **A,;** Tsujitani, R.; Kudo, M.; Otsuka, S. *J. Am. Chem. SOC.* **1978,** *100,* 3449.
- (9) Nakamura, **A.;** Konishi, **A,;** Otsuka, S. *J. Chem. SOC. D.* **1979,** 488.
- (10) Rechani, P. R.; Nakon, R.; Angelici, R. J. *Bioinorg. Chem.* **1976, 5,** 329. (1 1) Bedell, S. **A.;** Rechani, P. R.; Angelici, R. J.; Nakon, R. *Inorg. Chem.* **1977.** *16.* 912.
- (12) Doyle, J.~R.; Slade, P. E.; Jonassen, H. **B.** *Inorg. Synth.* **1960,** *6,* 218.
- (13) Church, M. J.; Mays, M. **J.** *J. Inorg. Nucl. Chem.* **1971,** *33, 253.*
- (14) Forster, **M.** 0. *J. Chem. SOC.* **1913,103,666.** Forster, M. 0. *Zbid.* **1903,** $83, 514.$

Preparation of Ni(δ **-HCQD)**₂(δ -H₂CQD)₂. This complex was prepared by dissolving 0.96 mmol of γ -H₂CQD and 0.32 mmol of $Ni(NO₃)₂·6H₂O$ in 10 mL of MeOH, and the resulting solution was refluxed for only 1 h in the presence of 0.64 mmol of NaOMe. The green solution was then evaporated to dryness under vacuum, and the solid was dissolved in 15 mL of anhydrous CH_3CN which was dried by refluxing over $CaH₂$ for 8 h and distilling under anhydrous conditions. The green CH_3CN solution was filtered. The final filtrate was stored in a stoppered flask and cooled to about -25 °C. Within an hour fine green needle-like crystals of the product deposited at the bottom of the flask; yield 23%. Anal. Calcd for Ni- (C₁₀H₁₅N₂O₂)₂(C₁₀H₁₆N₂O₂)₂: C, 57.07; H, 7.44; N, 13.32; Ni, 6.97. Found: C, 56.95; H, 7.35; N, 13.28; Ni, 6.86.

Preparation of $\text{Cu}(B\text{-}H\text{CQD})_2\text{-}H_2\text{O}^{-1}/2\text{dioxane}$ **.** This compound was obtained by dissolving 0.32 mmol of Cu(OAc)₂ H₂O in 10 mL of MeOH containing 0.64 mmol of γ -H₂CQD. The dark brown solution was refluxed for $2-3$ h. After vacuum evaporation, the black oily residue was dissolved in 10 mL of dioxane; the resulting solution was filtered and approximately 5 mL of $H₂O$ was added. After several days, dark brown needle-like crystals of the compound covered the bottom of the flask. The dioxane in the complex was also detected by GC with CHCl₃ as solvent and using an SE-52 column; yield 80%. Anal. Calcd for $Cu(C_{10}H_{15}N_2O_2)_2 \cdot \overline{H}_2O^{-1}/_2C_4H_8O_2$: C, 51.19; H, 7.04; N, 10.86. Found: C, 51.02; H, 6.99; N, 10.54.

Preparation of Cu(β **-H₂CQD)Cl₂.** This complex was prepared by mixing 0.32 mmol of $CuCl₂·2H₂O$ with 0.32 mmol of γ -H₂CQD in 10 mL of absolute EtOH. After stirring of the mixture overnight, the green solution was evaporated to dryness. The solid was dissolved in 15 mL of CH₃CN from which green needle-like crystals were obtained; yield 60%. Anal. Calcd for Cu(C₁₀H₁₆N₂O₂)Cl₂: C, 36.32; H, 4.89; N, 8.47; C1, 21.44. Found: C, 36.29; H, 4.72; N, 8.35; C1, 21.57.

Preparation of $Pd(\beta-HCQD)$ **. This** $Pd(II)$ **complex was prepared** by suspending 0.32 mmol of β -H₂CQD in 25 mL of MeOH at 50 °C. Then an equivalent amount of NaOMe was added so that a clear solution was obtained. Immediately 0.16 mmol of $Pd(PhCN)₂Cl₂$ in 10 mL of CHCI₃ was mixed into the solution. After the resulting yellow solution was warmed at 70 $^{\circ}$ C in a hot H₂O bath for about 15 min. it was filtered into a flask containing 5 mL of $H₂O$. The filtrate totaling about 40 mL was left standing for a period of several days after which a crop of vellow needle-like crystals of $Pd(\beta-HCQD)$, were obtained; yield 45%. Anal. Calcd for $Pd(C_{10}H_{15}N_2O_2)_2$: C, 48.34; H, 6.10; N, 11.28. Found: C, 48.48; H, 6.30; N, 11.19.

Preparation of Pd(δ **-HCQD)₂.** Yellow Pd(PhCN)₂Cl₂ (0.32 mmol) was added to 10 mL of MeOH containing 0.64 mmol of δ -H₂CQD and an equivalent amount of Et_3N . After stirring of the mixture at 50 °C for 2 h, the yellow solution was filtered, and the filtrate was cooled to -25 °C. Yellow crystals of Pd(δ -HCQD)₂ crystallized out after 24 h in 45% yield. Anal. Calcd for $Pd(C_{10}H_{15}N_2O_2)_2$: C, 48.34; H, 6.10; N, 11.28. Found: C, 48.41; H, 6.17; N, 11.45.

Preparation of Pt(β **-HCQD)₂.** Dark brown crystals of Pt(β - $HCQD$ ₂, were prepared in the same manner as $Pd(\beta-HCQD)$ ₂; yield 18%. Anal. Calcd for $Pt(C_{10}H_{15}N_2O_2)_2$: C, 41.02; H, 5.17; N, 9.57. Found: C, 40.89; H, 5.56; N, 9.15.

Preparation of Pd(γ **-H₂CQD)₂Cl₂.** Upon mixing 10 mL of CHCl₃ solutions of γ -H₂CQD (0.32 mmol) and Pd(PhCN)₂Cl₂ (0.16 mmol) at room temperature, yellow crystals of $Pd(\gamma-H,CQD)$, Cl₂ almost immediately started to crystallize out of the solution. The reaction was complete within 15-30 min in 80% yield. Anal. Calcd for $Pd(C_{10}H_{16}N_2O_2)_2Cl_2$: C, 42.15; H, 5.67; N, 9.83; Cl, 12.44. Found: C, 42.08; H, 5.40; N, 9.75; C1, 12.63.

Preparation of Pd(δ -H₂CQD)₂Cl₂. This compound was prepared in the same manner as $Pd(\gamma-H_2CQD)$ ₂Cl₂; yield 80%. Anal. Calcd for Pd($C_{10}H_{16}N_2O_2$)₂Cl₂: C, 42.15; H, 5.67; N, 9.83; Cl, 12.44. Found: C, 42.13; H, 5.96; N, 9.53; CI, 13.76.

Preparation of Pd(α **-H₂CQD)₂Cl₂. This complex was prepared in** the same manner as $Pd(\gamma \cdot H_2\overline{CQD})_2Cl_2$; yield 80%. Anal. Calcd for $Pd(C_{10}H_{16}H_2O_2)$; C, 42.15; H, 5.67; N, 9.83; Cl, 12.44. Found: C, 42.86; H, 5.75; N, 9.64; C1, 13.12.

Preparation of $Pd(\beta-H_2CQD)Cl_2$ **. This complex was prepared by** mixing a boiling 2:1 MeOH/CHCI3 solution of β -H₂CQD (0.32 mmol) and 10 mL of a CHCl₃ solution of $Pd(PhCN)₂C₁₂$ (0.32 mmol). After filtration, the filtrate upon cooling to room temperature gave a crop of orange crystals of $Pd(\beta-H_2CQD)Cl_2$; yield 30%. Anal. Calcd for $Pd(C_{10}\bar{H}_{16}N_2O_2)Cl_2$: C, 32.15; H, 4.33; N, 7.50; Cl, 18.98. Found: C, 32.38; H, 4.42; N, 7.60; CI, 18.72.

Figure 1. Computer-generated perspective view of γ -H₂CQD.

Preparation of $Pt(\beta-H_2CQD)Cl_2$ **. The preparation of this complex** was the same as above except $Pt(PhCN)_2Cl_2$ was used; yield 30%. It was shown by its IR spectrum to be the desired product.

Preparation of Pd(H₂CHD)Cl₂. The same procedure as the preparation of $Pd(\beta-H_2CQD)Cl_2$ was used; yield 70%. Anal. Calcd for $Pd(C_6H_{10}N_2O_2)Cl_2$: C, 22.56; H, 3.16; N, 8.77; Cl, 22.19. Found: C, 22.60; H, 3.22; N, 8.87; C1, 22.52.

Preparation of Pd(H₂DMG)Cl₂. This complex was prepared in the same manner as $Pd(\beta-H_2CQD)Cl_2$; yield 60%. Anal. Calcd for $Pd(C_4H_8N_2O_2)Cl_2$: C, 16.37; H, 2.75; N, 9.55; Cl, 24.16. Found: C, 16.34; H, 2.87; N, 9.49; C1, 24.05.

Preparation of $[Pt(\gamma-HCQD)(\gamma-H_2CQD)Cl_2$ **.** Pink K_2PtCl_4 (0.32 mmol) was dissolved in 5 mL of H_2O at 60 °C, and 0.64 mmol of y-H2CQD in 10 **mL** of 1:l H20/MeOH was added. The resulting yellow solution was then allowed to cool to room temperature. The orange-yellow product which precipitated out was filtered and air-dried; yield 60%. Anal. Calcd for $Pt(C_{10}H_{15}N_2O_2)(C_{10}H_{16}N_2O_2)Cl$: C, 38.61; H, 5.03; N, 9.01; C1, 5.69. Found: C, 38.55; H, 5.14; N, 8.90; Cl, 5.22. The molecular weight determination of $Pt(\gamma \text{-} HCQD)(\gamma \text{-}$ H2CQD)Cl in acetone using osmometry gave 1278 g/mol while the calculated value for dimeric Pt(γ -HCQD)(γ -H₂CQD)Cl is 1250.2 g/mol.

Preparation of Pt(HCQD)₂.H₂O. When 2 equiv of NaOMe was added to $[Pt(\gamma-HCQD)(\gamma-H_2CQD)Cl]_2$ in methanol, an orange solution was obtained. After being stirred for 15 min, it was evaporated to dryness under vacuum. The solid was dissolved in 15 mL of CH₃CN. After filtration, diethyl ether was added to precipitate out the product which was dried under vacuum overnight; yield 6096. Anal. Calcd for Pt($C_{10}H_{15}N_2O_2$)₂·H₂O: C, 39.79; H, 5.35; N, 9.28. Found: C, 39.94; H, 5.37; N, 9.23.

Preparation of Pd(HCQD)₂.H₂O. This complex was prepared from equimolar Pd(γ -H₂CQD)₂Cl₂ and Et₃N in acetone solvent, in a manner similar to that used for the preparation of Pt(HCQD)₂·H₂O. After being stirred for 15 min, the solution was evaporated to dryness. The orange solid was washed with hot H_2O , filtered, and then washed again with acetone and methanol. It was then dried under vacuum; yield 70%. Anal. Calcd for $Pd(C_{10}H_{15}N_2O_2)_2 \cdot H_2O$: C, 46.64; H, 6.28; N, 10.88. Found: C, 46.88; H, 6.36; N, 10.83.

Results and Discussions

Camphorquinone Dioxime Ligands, H,CQD. The four isomers of H_2CQD were first prepared by Forster.¹⁴ However, not until 1967 when Daniel and Pavia¹⁵ conducted ¹H NMR studies on these isomers were their structures established. Our X-ray structural study¹⁶ of γ -H₂CQD also indicated that it has the syn structure. **A** computer-generated perspective view of γ -H₂CQD is shown in Figure 1 in which the oxime O atoms are directed toward each other.

The IR spectrum of γ -H₂CQD in a KBr pellet gives three bands of medium intensity at 1600, 1640, and 1540 cm⁻¹. In CHCl₃ solution, only the band at 1600 cm^{-1} is observed, plus two other intense bands at 960 and 980 cm-I. These latter two bands are assigned as N-0 stretching vibrations. Deuterium substitution of the oxime protons causes the 1640- and

Figure 2. ESR spectrum of $Cu(β -HCQD)₂$ in CHCl₃ at room temperature recorded on a Varian E-3 ESR spectrometer. $g = 2.08$ measured by comparison with perylene radical cation.

1540-cm-' bands to decrease in intensity and two new bands to appear at 1150 and 1090 cm⁻¹, respectively. They are probably associated with the OH deformation vibration of N -OH.¹⁷ Therefore, we assign the band at 1600 cm⁻¹ to a C=N stretching vibration.

The CHCl₃ solution IR spectra of α - and δ -H₂CQD give $\nu(C=N)$ absorptions at 1655, 1600 cm⁻¹ and 1670, 1605 cm⁻¹, respectively, in good agreement with those reported by Nakamura et al.⁹ Finally, the ν (C=N) absorptions of β -H₂CQD are not readily observed due to extensive H bonding which broadens the region between 1600 and 1700 cm-'. However, substituting deuterium for the oxime protons causes the disappearance of the broad band at 1600 cm^{-1} and reveals two bands of medium intensity at 1670 and 1615 cm⁻¹. They are therefore assigned as the ν (C=N) absorptions. The N-O vibrations of β -, α -, and δ -H₂CQD are generally observed between 900 and $1100 \text{ cm}^{-1.18}$ as intense bands.

Bis(B-camphorquinone **dioximato)copper(II)-Water-** H emikis(dioxane), $Cu(\beta-HCQD)_{2}·H_{2}O^{-1}/_{2}$ dioxane. $H_{2}CQD$ might be expected to react with metal ions in the presence of base according to eq 1. Two isomeric products are possible.

When Cu(OAc)₂·H₂O was reacted with γ -H₂CQD in MeOH, only a dark brown product, Cu(β -HCQD)₂·H₂O⁻¹/₂dioxane, was obtained. The IR spectrum of the complex exhibits *v*-

⁽¹⁵⁾ Daniel, **A.;** Pavia, A. A. *Tetrahedron Lett.* **1967, 1145.**

⁽¹⁶⁾ Ma, M. **S.;** Jacobson, R. A.; Angelici, R. J., unpublished **work.**

⁽¹⁷⁾ Satpathy, *S.;* Saboo, B. *J. Znorg.* Nucl. *Chem.* **1971,** *33,* **1313. (18)** Bose, K. S.; Patel, C. C. *J. Znorg. Nucl. Chem.* **1971,** *33,* **2947**

Figure 3. $Cu(\beta-H_2CQD)Cl_2$ dimer.

 $(C=N)$ absorptions at 1610 and 1560 cm⁻¹ as was previously found for Cu($\text{HDMG}_2^{19,20}$ and Cu(HCHD)₂²¹ this suggests that the HCQD- ligand is N,N coordinated to Cu(I1). Further evidence for square-planar N,N coordination comes from the ESR spectrum shown in Figure *2.* By analogy with results reported by Wiersema and Windle²² for Cu(HDMG)₂, Cu- $(\beta$ -HCQD)₂ should have four lines due to copper (⁶³Cu, ⁶⁵Cu, $I = \frac{3}{2}$ nuclear hyperfine interaction plus extra lines due to nitrogen $(^{14}N, I = 1)$ hyperfine interactions which can be accounted for as 9 nitrogen hyperfine lines per copper. Because of line broadening on the low-field side of the spectrum, they are not readily observed; however, nitrogen hyperfine splitting is observed on the high-field side. The $CHCl₃$ solution spectrum (Figure 2) of $Cu(\beta-HCQD)$ ₂ is nearly identical with that of $Cu(HDMG)₂$.²² Although $Cu(HDMG)₂$ is known to exist as a dimer²³ in the solid state, little is known about the structure of solid $Cu(\beta-HCQD)_{2} \cdot H_{2}O^{-1}/_{2}$ dioxane; however, the presence of H_2O and dioxane seems to be important for the formation of crystals. Its UV -vis spectrum in $CHCl₃$ gives a broad absorption band with a maximum at 445 nm $(6.7.9)$ \times 10³ cm⁻¹ M⁻¹) most likely due to a d-d transition while its charge-transfer band is observed at 266 nm, comparable to that of $Cu(HDMG)₂$.²⁴

(a-Camphorquinone dioxime)copper(II) Chloride, Cu(& $H_2CQD)Cl_2$. This complex can be prepared by reacting $CuCl_2$ with γ -H₂CQD in the absence of added base in absolute EtOH. Unlike $Cu(H₂DMG)Cl₂$, it is very stable in air. Svedung²⁵ reported that the structure of $Cu(H₂DMG)Cl₂$ consists of double chains of $Cu(H₂DMG)Cl₂$ dimers linked together by intermolecular O-H-O bonds. Since $Cu(\beta$ - $H_2CQD)Cl_2$ has an IR spectrum very similar to that of Cu- $(H₂DMG)Cl₂$, we believe that it probably has a similar dimeric structure as shown in Figure 3. The two molecules are bridged by C1 atoms, and the structure is probably further stabilized by intramolecular 0-H-Cl bonding.

The intense IR band at 1450 cm^{-1} (Table V), presumably due to the ν (C=N) absorption, was observed in Cu- $(H₂DMG)Cl₂$ and is also observed in similar Pt(II) and Pd(II) compounds (see below). Svedung was unable to account for such a low frequency for a $\nu(C=N)$ vibration, although Mikhelson and Evtushenko¹⁹ assigned it to the ν (C=N) vibrational mode.

 $\text{Bis}(\delta\text{-cambborguinone doximato})$ nickel(II), Ni $(\delta\text{-HCQD})_2$. This brown complex was prepared by addition of NaOMe to a methanol solution of $Ni(NO₃)₂·6H₂O$ and γ -H₂CQD. Our earlier single-crystal X-ray structural study 6 established that the ligand forms a six-membered chelate ring by coordinating

-
-
- **(25)** Svedung, D. H. *Acra Chem. Scand.* **1969, 23,** *2865.*

Figure 4. Computer-generated perspective view of $Ni(\delta \text{-}H\text{CQD})_2$.

Figure 5. Cis isomer of $Ni(\delta\text{-}HCQD)_{2}$.

to the Ni through the N and O atoms in a trans manner as shown in Figure 4.

The reason for this unusual coordination is believed to be the bicyclic nature of the ligand which increases the C-C-N angles in the chelate ring to the point where formation of a larger ring by N, O rather than N, N coordination becomes more favorable. The IR spectrum of $Ni(\delta\text{-HCQD})$, shows an absorption band of medium intensity at 1690 cm^{-1} . Deuterium substitution studies indicate that this absorption is not associated with the OH group but presumably arises from a vibration which has considerable $C=N$ stretching character. The other ν (C=N) absorption occurs at 1560 cm⁻¹.

 $\text{Bis}(\alpha\text{-camborquinone doximate)}$ nickel(II), Ni($\alpha\text{-HCQD}$),. This green complex was prepared by adding α -H₂CQD to a methanol solution of $Ni(OAc)$, $4H₂O$. It also probably has trans N,O coordination around the Ni as in the case of Ni- $(\delta$ -HCQD)₂. This assumption is supported by the presence of two different ν (C=N) absorptions at 1675 and 1560 cm⁻¹ in the IR spectrum. In a recent paper, Nakamura et al.⁹ reported the preparation of the same Ni(I1) and Pd(I1) complexes of HCQD⁻. Our spectral data for $Ni(\delta\text{-HCQD})_2$ and $Ni(\alpha$ -HCQD), were in good agreement with theirs.

Although the coordination around Xi is very similar in both $Ni(\alpha$ -HCQD)₂ and Ni(δ -HCQD)₂ complexes, Ni(α -HCQD)₂ is observed to be less stable. Recrystallization of $Ni(\alpha$ - $HCQD$ ₂ in boiling (1:3:1) CHCl₃/MeOH/H₂O partially converts $Ni(\alpha$ -HCQD)₂ into $Ni(\delta$ -HCQD)₂. It is possible that the repulsion of the oxime 0 with the bridgehead methyl (see structure of α -H₂CQD) destabilizes the Ni(α -HCQD)₂ complex relative to that of $Ni(\delta\text{-}HCQD)$,

The mixed ligand complex $Ni(\alpha$ -HCQD)(δ -HCQD) has not been isolated nor has any Ni complex with cis N,O coordination (Figure 5) around Ni been detected. Such an arrangement of ligands with two oxime protons placed on the same side of the complex would presumably be less stable due to the lack of hydrogen bonding which is present in the other Ni complex.

¹H NMR spectra of Ni(δ -HCQD)₂ and Ni(α -HCQD)₂ are summarized in Table I. The chemical shifts of the methyl proton signals in each complex are very close to those of the free ligands (Table I), The oxime protons are downfield at 10.94 and 11.10 ppm, respectively.

The UV-vis spectra of the two complexes (Figure 6) are almost identical; their absorption maxima and *E* values are summarized in Table 11.

Bis(6-camphorquinone dioximato)bis(&camphorquinone dioxime)nickel(II), Ni(δ **-HCQD)₂(** δ **-H₂CQD)₂. This unstable** complex was prepared using a 3:1 ratio of γ -H₂CQD to Ni- $(NO₃)₂$ -6H₂O and crystallized from anhydrous CH₃CN at -25 *"C.* Once the complex crystallized out, further attempts to

⁽¹⁹⁾ Mikhelson, P. 9.; Evtushenko, N. P. *Russ. J. Inorg. Chem. (Engl. Transl.)* **1970,** *15,* 790.

⁽²⁰⁾ Bigotto, A,; Costa, G.; Galasso, V.; Alti, *G.* **De.** *Spectrochim. Acta* **1970, 26,** 1939.

⁽²¹⁾ Blinc, R.; Hadzi, D. *J. Chem.* Sot. **1958,** 4536.

⁽²²⁾ Wiersema, A. K.; Windle, J. J. J. Phys. Chem. 1964, 68, 2316.
(23) Vaciago, A.; Zambonelli, L. J. Chem. Soc. A 1970, 218.
(24) Caton, J. E., Jr.; Banks, C. V. Talanta 1966, 13, 967.

^{*a*} CHC1₃-d. ^{*b*} Acetone- d_6 . ^{*c*} C10-methyl. ^{*d*} Sharp singlet. *e* Broad and asymmetrical. *f* Not observed.

Table **11.** UV-Visible Spectra of Ni Complexes

complex	$\lambda_{\textbf{max}}, \textbf{nm}$	ϵ , cm ⁻¹ M ⁻¹
Ni(δ -HCQD), ^a	576	3.5×10
	413 sh ^o	1.6×10^{3}
	360 sh	3.3×10^{3}
	308	1.8×10^{4}
$Ni(\alpha$ -HCQD), ^{α}	576′	3.3×10
	405 sh	8.8×10^2
	359 sh	1.6×10^{3}
	306	1.3×10^{4}
Ni(δ -H ₂ CQD) ₂ (δ -HCQD) ₂ ^c	413	\sim
	359	
	304	

Figure 6. UV-visible spectra of $Ni(\delta \text{-} H CQD)_{2}$ (-) and $Ni(\alpha \text{-} H CQD)_{2}$ \overline{HCQD}_2 (---) in CHCl₃.

recrystallize it led only to $Ni(\delta\text{-}HCQD)_{2}$.

Proton NMR studies established that all four ligands in $Ni(\delta\text{-}HCQD)_{2}(\delta\text{-}H_{2}CQD)_{2}$ have the δ structure. In acetone- d_6 , six methyl proton signals of equal intensity are observed (Table I). The signals at 0.86, 1.01, and 1.09 ppm can be assigned to the free δ -H₂CQD ligand while those at 0.82, 0.96, and 1.12 ppm belong to $Ni(\delta\text{-HCQD})_2$. The entire ¹H NMR spectrum can be reproduced by mixing a 1:2 ratio of

Figure 7. UV-visible spectrum of Ni(S-H,CQD),(S-HCQD), as **KBr** pellet.

Figure 8. Ni(δ-H₂CQD)₂(δ-HCQD)₂ square-planar coordination with trans N_2O_2 . Two other ligands are omitted for clarity.

Ni(δ -HCQD)₂ and δ -H₂CQD in acetone- d_6 . This result implies that $Ni(\delta\text{-}HCQD)_{2}(\delta\text{-}H_{2}CQD)_{2}$ exists as $Ni(\delta\text{-}HCQD)_{2}$ and δ -H₂CQD in solution, which is consistent with the fact that recrystallization of the complex gives only $Ni(\delta\text{-HCQD})_2$.

The observation of ν (C=N) absorptions of the free ligand at 1670 and 1605 cm⁻¹ and of Ni(δ -HCQD)₂ at 1690 and 1560 cm⁻¹ in the IR spectrum of Ni(δ -HCQD)₂(δ -H₂CQD)₂ in CHCl₃ solvent further supports the presence of these species in solution. However, the IR spectrum of the solid complex in KBr gives only a medium intense band with slight splittings at 1565 cm⁻¹ which can be assigned to $\nu(C=N)$ of N-coordinated oxime. A weak band is observed at 1690 cm⁻¹ which is due to the O-coordinated $\nu(C=N)$. The difference in the solution and solid-state IR spectra implies that, in the crystalline state, all four ligands are coordinated to the metal; the structure is probably stabilized by hydrogen bonding as indicated by the intense absorption band between 3260 and 3 100 cm-l **26** in the solid-state **IR** spectrum.

The UV-vis absorption spectrum (Figure 7) of the solid complex pressed into a KBr pellet is very similar to solution spectra of Ni(δ -HDCQD)₂ and Ni(α -HCQD)₂. Such a similarity suggests that there are also two N and two O donor groups in the coordination sphere of $Ni(\delta\text{-HCQD})_{2}(\delta\text{-}$ H_2CQD_2 . Steric considerations favor a trans arrangement

(26) **Sen,** B.; Malone, D. M. *Inorg. Nucl. Chem.* **1972,** *34,* **3509.**

of these donors around the Ni as shown in Figure 8. This structure is consistent with a facile solution dissociation of two δ -H₂CQD ligands followed by ring closure of the δ -HCQD⁻ ligands to give $Ni(\delta\text{-HCQD})_2$.

Bis(@-camphorquinone dioximato)palladium(II), Pa(@- $HCQD$ ₂. The yellow complex $Pd(\beta-HCQD)$, was prepared in $H_2O/MeOH/CHCl_3$ (1:3:1) from $Pd(PhCN)_2Cl_2$, β - H_2CQD , and NaOMe. This is a different method from the one reported by Nakamura et al., 9 and the product is probably a mixture of two isomers with structures shown in eq 1.

The IR spectrum of the complex clearly indicates N,N chelation of the ligands around the Pd atom. The ν (C=N) band appears at 1550 cm⁻¹, and the H-bonded $\nu(OH)$ absorption at 2380 cm⁻¹ is comparable to the reported value for $Pd(HCHD)₂$.²¹ The UV-vis absorption spectrum exhibits a shoulder at 362 nm (ϵ 2.0 \times 10³ cm⁻¹ M⁻¹) and a chargetransfer band at 274 nm (ϵ 1.4 \times 10⁴ cm⁻¹ M⁻¹).

In its ¹H NMR spectrum (Table I) taken in CHCl₃-d, the oxime proton with a chemical shift of 12.35 ppm downfield from $Me₄Si$ is observed as a broad asymmetric peak. Although Marov et al.,²⁷ who studied the H bonding of Ni(II) α -dioximates by ${}^{1}H$ NMR, suggested that an asymmetric peak indicates the presence of isomers, there is no independent evidence for their presence in this system. However, a ¹³C NMR study by Nakamura et al.⁹ has shown that isomers are indeed present in this complex.

Bis(6-camphorquinone dioximato)palladium(II), Pd(6- $HCQD)_2$. Yellow crystals of $Pd(\delta-HCQD)_2$ could be obtained by reacting $Pd(PhCN)_{2}Cl_{2}$ with $\delta-H_{2}CQD$ in MeOH in the presence of Et_3N . This procedure is different from the one reported by Nakamura et al.⁹ and gave crystals of Pd(δ - H_2CQD_2 so that elemental analyses and an ¹H NMR spectrum of the complex could be obtained.

It is believed to have the same N,O-coordinated structure as $Ni(\delta\text{-HCQD})$, because its ¹H NMR spectrum (Table I) in Me₂SO- d_6 is almost identical with that of Ni(δ -HCQD),. Its IR absorptions at 1560 and 1620 cm^{-1} may be assigned to the N-coordinated and O-coordinated oxime ν (C=N) frequencies, respectively. The $\nu(OH)$ absorptions are observed at 3400 and 2600 cm⁻¹.

Bis(@-camphorquinone dioximato)platinum(II), Pt(@- HCQD)₂. This complex was prepared by reacting Pt-(PhCN)₂Cl₂ with NaOMe and β -H₂CQD in a 1:3:1 CHCl₃/ $MeOH/H₂O$ solution. The brown crystalline product has the structures shown in eq 1. The UV-vis spectrum unequivocally established N,N coordination of the β -HCQD⁻ ligands by comparison with spectra of $Pt(HDMG)_2^{28}$ and $Pt(HCHD)_2$. Maxima for Pt(β -HCQD)₂ occur at 411 nm (ϵ 1.3 \times 10³ cm⁻¹ M^{-1}) and 340 nm (ϵ 4.0 \times 10³ cm⁻¹ M⁻¹). Absorptions at 305 nm (ϵ 1.09 \times 10⁴ cm⁻¹ M⁻¹) and 273 nm (1.14 \times 10⁴ cm⁻¹ M^{-1}) are probably charge-transfer bands. In the IR spectrum, the ν (C=N) absorption appears at 1570 cm⁻¹ as a broad but intense band, and H-bonded $\nu(OH)$ bands at 3400 and 2380 cm-I are observed. Its 'H NMR spectrum (Table 1) resembles that of $Pd(\beta-HCQD)$, showing an asymmetric peak for the oxime protons at 12.56 ppm possibly indicating the presence of both isomers (eq 1).

trans-Bis(y-camphorquinone dioxime)platinum(II) Chloride, trans-Pd(γ **-H₂CQD)₂Cl₂.** A CHCl₃ solution of Pd(PhCN)₂Cl₂ in the presence of γ -H₂CQD gives large yellow needle-like crystals of $Pd(\gamma-H_2CQD)_{2}Cl_2$. Spectra and a conductivity measurement on this complex suggest that the γ -H₂CQD ligands are monodentate and coordinate to the Pd in positions trans to each other. The trans geometry is supported by the presence of only one Pd-C1 absorption band at 345 cm-' in

(27) Marov, I. N.; Panfilo, **A.** T.; Zvanova, E. I.; Plekanov, N. **4.** *Koord. Khirn.* **1975,** 11, **1516.**

(28) Alti, *G.* **De.;** Galasso, V.; Bigotto, A. *Inorg. Chim. Acta* **1970, 26,** 267.

Figure 9. $trans-Pd(\gamma-H_2CQD),Cl_2$.

Table 111. 'H NMR of Metal Camphorquinone Dioxime (H,CQD) Dichloride Complexes

complex	solvent	NMR of methyl-H, ppm	
$Pd(\gamma-H,CQD),Cl,$	acetone d_{ϵ}	0.92, 1.1, 1.12	
	$Me2SO-d6$	0.76, 0.91, 1.02	
γ -H ₂ CQD	$Me2SO-d6$	0.76, 0.91, 1.02	
$Pd(\alpha-H, CQD), Cl,$	$MeOH-d/$	0.92, 0.95, 1.02, 1.41	
acetone- d_{κ}			
	Me ₂ SO d_{ϵ}	0.84, 1.33	
α -H ₂ CQD	Me ₂ SO ₄	0.84, 1.33	
$Pd(\delta-H_2CQD)_2Cl_2$	$MeOH-d/$	0.84, 0.87, 0.98, 1.06	
acetone- d_6			
	Me, SO d_{ϵ}	0.74, 0.88, 0.98	
δ -H ₂ CQD	$Me2SO-d6$	0.74, 0.88, 0.98	
$Pd(\beta-H_2CQD)Cl_2$	CH_3CNd_3	0.98, 1.04, 1.34	
	Me, SO- d_e	0.84, 0.90, 0.94, 1.30, 1.34	
β -H ₂ CQD	Me ₂ SO ₄	0.83, 1.31	
$[Pt(\gamma-HCQD)$ -	acetone- d_{ϵ}	0.90, 1.00, 1.07, 1.10, 1.12	
$(\gamma$ -H ₂ CQD)Cl] ₂	$Me2SO-d6$	0.74, 0.90, 0.98, 1.04	

Table IV. 1R^a Absorption Frequencies (cm⁻¹) of Metal H₂CQD Dichloride Complexes

^{*a*} As KBr pellet. ^{*b*} Coordinated ν (C=N). ^{*c*} Uncoordinated $\nu(C=N)$. ^{*d*} Several $\nu(M-CI)$ are observed in this region.

the IR spectrum of the complex in KBr. By comparison of its IR spectrum with that of the free ligand, the coordinated oxime $v(\text{C=N})$ vibration may be assigned to the band at 1535 cm⁻¹ while the uncoordinated oxime $v(C=N)$ is at 1615 cm⁻¹ (Table IV). The ¹H NMR spectrum of Pd(γ -H₂CQD)₂Cl₂ is summarized in Table 111. The presence of other isomers is not observed. The downfield shift of the C4-H from 2.65 ppm of the free ligand to 4.34 ppm of the complex seems to indicate that coordination through the N atom of the C3 oxime is more favorable. Although coordination at the C2-N (Figure 9) is possible, this position is less favorable because of the steric interaction of the remainder of the metal complex with the C10 methyl group. Attempts to make $Pd(\beta-HCQD)$ ₂ out of $Pd(\gamma-H_2CQD)_{2}Cl_2$ in methanol by adding an equivalent amount of base led to the formation of $Pd(HCQD)₂·H₂O$, an orange solid of unknown structure insoluble in common organic solvents such as CHCl₃, methanol, or H_2O .

When a strongly coordinating solvent such as $Me₂SO$ is added to a MeOH solution of the complex, Me₂SO displaces the γ -H₂CQD ligands which were identified by their characteristic 'H NMR spectrum (Table 111).

Bis (6- **camphorquinone dioxime) palladium (11) Chloride,** $Pd(\delta - H_2CQD)$ ₂CI₂. This complex prepared in the same way as $Pd(\gamma-H_2CQD)_{2}Cl_2$ may exist as a mixture of cis and trans isomers as indicated by several ν (Pd-Cl) bands between 300 and 350 cm-' in its IR spectrum (Table IV). **A** possible structure of $Pd(\delta-H_2CQD)_{2}Cl_2$ is shown in Figure 10. The coordinated and uncoordinated oxime C=N absorption bands

Figure 11. trans-Pd(α -H₂CQD)₂Cl₂.

appear at 1555 and 1680 cm^{-1} , respectively. The complex is slightly soluble in acetone, and its 'H NMR spectrum exhibits four methyl proton signals (Table 111) consistent with the assumption that more than one isomer is present. When excess Me₂SO is added to a solution of the complex, the free δ - $H₂CQD$ is regenerated.

Bis(a-camphorquinone dioxime)palladium(II) Chloride, $Pd(\alpha-H_2CQD)_{2}Cl_2$. $Pd(\alpha-H_2CQD)_{2}Cl_2$ can be prepared in a manner similar to that of $Pd(\delta-H_2CQD)_{2}Cl_2$ and probably exists as cis and trans isomers. Its possible structure is shown in Figure 11. Its 'H NMR and IR spectra are summarized in Tables I11 and IV. Four methyl proton signals appear at 0.92, 0.95, 1.02, and 1.41 ppm. Coordinated and uncoordinated ν (C=N) are observed at 1560 and 1680 cm⁻¹, respectively. Since the ligand coordinates through its less sterically hindered oxime N, intramolecular H bonding is possible between the C1 atoms and the ligands, as shown in the trans complex (Figure 11).

Bis(@-camphorquinone dioxime)palladium(II) Chloride, $Pd(\beta-H_2CQD)Cl_2$. When a CH₃CN solution of Pd(γ - H_2CQD , $C1_2$ was allowed to stand for a period of 1-2 weeks at room temperature, $Pd(\beta-H_2CQD)Cl_2$ began to crystallize out. In this reaction, the γ -H₂CQD ligand is transformed into the β -isomer. A nearly quantitative yield of the Pd(β - $H_2CQD)Cl_2$ complex can be obtained by direct reaction between the ligand and $Pd(PhCN)_2Cl_2$.

As in the case of $Cu(\beta-H_2CQD)Cl_2$, an intense, sharp band at 1430 cm⁻¹ may be assigned to the ν (C=N) frequency. Sharp bands of medium intensity also appear at 3270 and 3220 cm-' corresponding to intermolecular and intramolecular H bonding,²⁵ respectively. The similarity of their IR spectra (Table V) implies that $Pd(\beta-H_2CQD)Cl_2$ and $Cu(\beta-H_2CQD)Cl_2$ H2CQD)C12 have similar square-planar structures (Figure **3)** with possible intermolecular bridging.

The β -H₂CQD ligand is not displaced when the complex is dissolved in Me₂SO, but formation of other Pd complexes occurs as indicated by the appearance of new signals in the 'H NMR spectrum (Table 111).

The method for the preparation of $Pd(\beta-H_2CQD)Cl_2$ can also be used to prepare $Pd(H_2CHD)Cl_2$ and $Pd(H_2DMG)Cl_2$, all having the same characteristic band at about 1410 cm^{-1} . The compound $Pd(H_2CHD)Cl_2$ has not been reported in the

As KBr pellet.

Figure 12. $[Pt(\gamma-H_2CQD)(\gamma-HCQD)Cl]_2$.

literature, but Busch et al.²⁹ prepared $Pd(H_2DMG)Cl_2$ by reaction of $Pd(HDMG)$ ₂ with acetyl chloride. Their IR spectra are summarized in Table **V.**

Bis[(y-camphorquinone dioxime) (**y-camphorquinone dioximato)platinum(II) chloride], [Pt(y-HCQD) (y-H2CQD)C1],.** This dimeric complex was prepared by the reaction of K_2PtCl_4 and γ -H₂CQD. A possible structure is shown in Figure 12. This particular structure requires the two ligands to be cis to each other. Steric considerations favor coordination at the less hindered oxime N. Such an arrangement also provides for substantial intramolecular H bonding.

The absorption bands at 1560 and 1610 cm^{-1} in the IR spectrum may be assigned to the ν (C=N) vibrations of the coordinated and uncoordinated oxime groups. The broad $\nu(OH)$ absorptions at 3100 and 2800 cm⁻¹ resemble those of γ -H₂CQD, suggesting that γ -H₂CQD and γ -HCQD⁻ are present in the complex. As in the case of $Pd(\gamma-H,CQD),Cl_2$, addition of base to a methanol solution of $[Pt(\gamma-HCQD)(\gamma H_2CQD|Cl_2$ yielded the highly insoluble complex Pt- $(HCQD)₂·H₂O$ of unknown structure. Attempts to isolate pure $Pt(\alpha - H_2\overline{C}QD)_2Cl_2$ and $Pt(\delta - H_2CQD)_2Cl_2$ were unsuccessful.

Conclusion

Camphorquinone dioxime has been shown to be capable of being either a bidentate or monodentate ligand. **As** a bidentate ligand in the complexes $\text{Ni}(\alpha\text{-HCQD})_2$, $\text{Ni}(\delta\text{-HCQD})_2$, and $Pd(\delta-HCQD)_{2}$, $\alpha-HCQD^{-}$ or $\delta-HCQD^{-}$ coordinates to the metal ion via N,O chelation. This mode of coordination is characterized by the presence of both the N-coordinated and O-coordinated ν (C=N) absorptions in the IR spectrum.

In the complexes $Pd(\beta-HCQD)_2$, $Pt(\beta-HCQD)_2$, and Cu- $(\beta$ -HCQD)₂·H₂O·¹/₂dioxane, β -HCQD⁻ coordinates to the metal ion by N,N chelation. In this case, only N-coordinated $\nu(C=N)$ absorptions are observed in their IR spectra. The failure to obtain $Ni(\beta\text{-}HCQD)_2$, even from the reaction of Ni^{2+} with β -H₂CQD and base, is believed to be due to the bicyclic nature of the ligand which increases the C-C-N angles so that formation of five-membered chelate rings around Ni(I1) becomes less favorable. This is supported by our earlier crystal structure determination of Ni(δ -HCQD)₂.⁶ The isolation of $Cu(β -HCQD)₂·H₂O⁻¹/₂dioxane with N,N coordination of the$ β -HCQD⁻ ligand was somewhat surprising because Cu(II) has the smallest ionic radius of the four metal ions used in these studies. Therefore the strain in the chelate ring should be greatest. This result might be understood, however, by con-

⁽²⁹⁾ Busch, D. H.; Krause, R. A.; **Jicha,** D. C. *J. Am. Chem.* **Sot. 1961,83,** *528.*

sidering the M-N bond strength in the $M(HDMG)$ ₂ complexes; they are reported²⁰ to decrease in the order $Pt(II)$ > $Pd(II)$ > Cu(II) > Ni(II). The higher Cu–N bond strength presumably more than compensates for the strain in the five-membered rings of the Cu(β -HCQD)₂·H₂O¹/₂dioxane.

In the complexes $Pd(\beta-H_2CQD)Cl_2$, $Pt(\beta-H_2CQD)Cl_2$, and $Cu(\beta-H_2CQD)Cl_2$, the neutral $\beta-H_2CQD$ ligand also chelates through both N atoms. This type of compound exhibits a strong infrared absorption for coordinated $v(C=N)$ between 1450 and 1400 cm⁻¹.

In the complexes $Pd(\gamma-H_2CQD)_2Cl_2$, $Pd(\delta-H_2CQD)_2Cl_2$, and $Pd(\alpha-H_2CQD)_{2}Cl_2$, the H₂CQD ligand coordinates through only one of its N atoms. Since our attempts to synthesize similar Pd complexes from H_2DMG and H_2CHD were unsuccessful, the $Pd(H_2CQD)_2Cl_2$ complexes are the first reported examples of a monodentate α -dioxime ligand. This type of complex is probably stabilized to some extent by the formation of inter- or intramolecular H bonds as in the case of bis(cyclohexanone oxime)palladium dichloride.³⁰ Finally,

in $[Pt(\gamma-HCQD)(\gamma-H_2CQD)Cl]_2$ and $Ni(\delta-HCQD)_2(\delta-HCQ)$ H_2CQD_2 , the ligands also appear to coordinate as monodentate ligands but in the unusual proposed structures shown in Figures 8 and 12.

Acknowledgment. We appreciate the support of this research by the National Institute of General Medical Sciences (Grant No. GM12626).

Registry No. $Ni(\delta\text{-}HCQD)_2$, 52139-64-7; $Ni(\alpha\text{-}HCQD)_2$, 52231-70-6; Ni(δ -HCQD)₂(δ -H₂CQD)₂, 72100-32-4; Cu(β -HCQD)₂, 72100-33-5; Cu(β -H₂CQD)Cl₂, 72100-34-6; Pd(β -HCQD)₂, 71212-51-6; Pd(δ -HCQD)₂, 72100-35-7; Pt(β -HCQD)₂, 72100-36-8; Pd- $(\gamma-H_2CQD)_2Cl_2$, 72100-37-9; Pd($\delta-H_2CQD)_2Cl_2$, 72121-18-7; Pd- $(\alpha - H_2CQD)_{2}Cl_2$, 72150-72-2; Pd(β -H₂CQD)Cl₂, 72100-38-0; Pt(β - $H_2CQD)Cl_2$, 72100-39-1; Pd($H_2CHD)Cl_2$, 72100-40-4; Pd- $(\tilde{H}_2\tilde{D}\tilde{M}\tilde{G})\tilde{Cl}_2$, 30184-40-8; $[Pt(\gamma-HCQD)(\gamma-H_2CQD)Cl]_2$, 72121-19-8.

Contribution from the Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and the Chemistry Department, University of California, Berkeley, California 94720

Coordinately Unsaturated Metal Clusters. A Neutron Diffraction Study of the Crystal and Molecular Structure of the Trimeric Rhodium Complex $\{HRh[P(OCH_3)_3]_2\}$

RICHARD K. BROWN,^{2a} JACK M. WILLIAMS,*^{2a} ANDREW J. SIVAK,^{2b} and EARL L. MUETTERTIES*^{2b}

Received July 26, 1979

The molecular structure of $\{HRh[P(OCH_3)_3]_2\}$ has been determined by using neutron diffraction techniques $[T = 110]$ K]. The trimeric rhodium complex is monoclinic, space group $P2_1$ [C₂², No. 4], with $a = 10.792$ (6) Å, $b = 13.438$ (8) \hat{A} , $c = 13.438$ (8) \hat{A} , $\beta = 91.64$ (4)°, $V_c = 1948.02 \hat{A}^3$, and $d_{\text{calo}} = 1.801$ g cm⁻³ for $Z = 2$. The neutral molecule consists of a triangular array of Rh atoms each bonded in an approximately square-planar fashion to two terminal $P(OCH₃)$ ₃ groups and two bridging hydride ligands. The Rh-Rh separations involving single hydrogen bridges are 2.803 (7), 2.780 *(6),* and 2.856 (8) Å and the average Rh-H_b distance is 1.76 (3) Å. The bridging Rh-H_b separations reported here are the first interactions to be characterized structurally with neutron crystallographic techniques $(T = 110 \text{ K})$. A discussion of the origin of the structural distortion from planarity of the $\{HRhP_2\}$, cluster core is presented.

Introduction

The di- and trimeric rhodium clusters (HRh[P(O-i- C_3H_7 ₃ $_2$ ₂²₂ (1) and {HRh[P(OCH₃)₃ $_2$ ₃²₃ (2) have recently been shown to be exceedingly active catalysts toward the hydrogenation of olefins.^{3,4} These two clusters, the smallest oligomers for a potentially large set of hydrides of the form $\{HRh[P(OR)₃]\}₂\}$, have been shown to reversibly and rapidly add 1 molecule of hydrogen/molecule of cluster without detectable fragmentation of the cluster. The fact that the clusters themselves, rather than mononuclear $H_3Rh[P(OR)_3]_2$ fragments, are the principal intermediates in the catalytic hydrogenation of olefins suggests that these clusters, their hydrogen adducts, and the hydrogen adduct-olefin complexes⁴ may be viewed as tentative models of intermediates in olefin hydrogenation on metal surfaces. $6-13$ Accordingly, the precise

- (2) (a) Argonne National Laboratory. (b) University of California at
- Berkeley. **(3)** Day, **V.** W.; Fredrich, M. F.; Reddy, G. S.; Sivak, A. J.; Pretzer, W. R.; Muetterties E. L. *J. Am. Chem. SOC.* **1977,** *99,* 8091.
- (4) (a) Brown, R. K.; Williams, J. M.; Fredrich, M. F.; Day, V. W.; Sivak, A. J.; Muetterties, E. L. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 2099.
(b) Sivak, A. J.; Muetterties, E. L. J. Am. Chem. Soc. 1979, 101, 4878.
- (5) Strouse, C. E. *Rer;. Sci. Instrum.* **1976,** *47,* 871.

structural and stereochemical features of these polynuclear rhodium species are of considerable interest especially since the detailed structural characterization, at the molecular level, of hydrocarbon substrates chemisorbed on metal surfaces is an exceedingly difficult task.¹² The isolation of large single crystals of complexes **1** and **2** has allowed structural characterization of these potential catalytic surface-substrate models.^{4,12,13} We report here the complete neutron diffraction structural characterization of **2.** Although the nonhydrogen atom framework was previously determined by X-ray diffraction, $³$ the complete structural characterization of the</sup> {HRhP2I3 core required neutron diffraction analysis. **A** preliminary account of this work has been previously reported.⁴

Experimental Section

The trimeric rhodium complex, 2, is monoclinic space group $P2_1$ [C_2^2 , No. 4] with $a = 10.792$ (6) Å, $b = 13.438$ (8) Å, $c = 13.438$

- Burwell, R. L., Jr. *Chem. Eng. News* **1966,** *44* (34), 56.
- Ugo, R. *Cutal. Rec.* **1975,** *11,* 225.
-
- Lewis, J.; Johnson, B. F. G. *Pure Appl. Chem.* 1975, 44, 43.
Muetterties, E. L. *Science* 1977, 196, 839.
Muetterties, E. L. *Bull. Soc. Chim. Belg.* 1975, 84, 959.
- *SOC. Chim.*
- (11)
- (12)
- Muetterties, E. L*. Bull. Soc. Chim. Belg.* **1976**, 85, 451.
Muetterties, E*. L. Angew. Chem., Int. Ed. Engl.* **1978**, *17*, 545.
Muetterties, E. L.; Rhodin, T.; Band, E.; Brucker, C.; Pretzer, W. R.
Chem. Rev. **1979**, 7 w. *Chem., Int. Ed. Engl.* 1978, 17, 545.
lin, T.; Band, E.; Brucker, C.; Pretzer, W. R. (13)
-

⁽³⁰⁾ Tanimura, M.; Mizushima, T.; Kinoshita, *Y. Bull. Chem. SOC. Jpn.* **1967,** *40,* 2777.

⁽¹⁾ This work was performed under the auspices of the Office of Basic Energy Sciences of the United States Department of Energy. We also wish to acknowledge the partial support of this collaborative research by the National Science Foundation (Grant *No.* CHE-78-20698) through a grant to J.M.W. and E.L.M.